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432X325X70analysis grid, level 1
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Making use of knowledge of errors in the linear

model

= |ots of diagnostic information about linearisation errors
= Fairly consistent between different cases

= Plausible that in incremental 4D-Var the error from the linear (“PF”)
model is as large or larger than full (“UM”) model error

= PF model error arises through
Processes missing or approximated
Lower resolution (as well as linearisation)

But this is one case where we know what the errors are (cf
background errors, full model error, even observation errors)

Therefore unlimited scope to model them compacitly

= How can we use this information to improve 4D-Var?
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Optimal estimation where one has two models -

We suppose we have a good model (‘UM") M; with small model error

Xi+1 = Mix; + € (1)
and a second linear model MiP (‘PF Model') which approximates the
forecast of increments

p
Mix; — Mxd = MP(x; — x7) + €M (2)

where x? are guess states.

As usual the observation model is

yi = Hix; + €
We will suppose €M, eiMp and €9 are uncorrelated with

M~ N(0,QM), M ~ N (0,Q7), € ~ N (0, R).



Linear case, cont'd

If we combine (1,2) we obtain
Xit1 = MPIx;+ [Mx] — MPx7] 4+ w;
where w; = €M 4 €M” which is in the form of signal model for a KF
with forcing M;x? — MFxJ and
w; ~ N (0, + Q")
There is also a variational equivalent: let

g

0; = x; — X;

Then if §,, is obtained by minimising
_ 1 X _
J =808 100+ 2 bys— HG + 0" R ys — H(x{ + 6))]
1 & n T A—1
3 Y10 = MY 61 +x) = M_ax] (1P Q76 — M_16; 1 +x] — M;_1x] ]
i=1

where Q = QM + QF, then xm = xJ, + dm is identical to K pn|m OUtPUL
from the Kalman Filter.



Nonlinear full model

Suppose we have a (fairly accurate) nonlinear full model f at high
resolution

Xp4+1 = fru(Xk) + wg (3)
Let P be the projection from full to low resolution
7z = Px

and Pt is a pseudo-inverse of P which attempts to reconstruct the
intermediate values by some form of interpolation.

PP+ = ljow res

We wish to estimate the states x1,xo,... from observations yi,yo, ...



Linear model for evolution of increments

We have a linear map G which approximates the forecast of low
resolution increments:

Gr(Pxy, — PRyp) ~ Pfr(xg) — Pfir.(Xy ) (4)

If fi,. was differentiable and easy to differentiate (and the increments

were small) we would naturally take G), to be the tangent-linear
0
GpP = ——P fr(xx)

ox =
k X=Xk|k
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Linearisation error as a stochastic error

Decompose the right hand side of (3):

Xp4+1 = (X)) + Wi
= fe(xk) = fr (X)) + FrKgpp) +
Pt Gy (Pxj, — PRyp,) — PTGR(Pxy — PRypp) + wy

we will consider the error in (4)
Cr = froG) = frRipr) — PTGR(Pxy — PRyyp) (5)
as a stochastic error (akin to the model error wy), and
w, = fir(Rppp) — PTGRPRy
as a forcing, leaving us with

Xpt1 = PTGLPxp + up, + € + wy (6)
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Issues In forming EKF

If {;, and wj, were white (ie uncorrelated in time) and uncorrelated with
each other then we would simply form

Q = E[¢p¢F] + Elwgw]]

and obtain a fairly standard looking (extended) Kalman Filter, in this
case for our system with error in the linear model.

The main complications in forming an EKF are

(i) that the linearisation error {; as defined in (5) is a function of
the analysis (which is a function of the linear model), so estimates of
covariance matrices will need to be iterated, and

(ii) that in practice the error ;. in the linear model is often strongly
correlated in time.
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Need for compact representation of error

orrelations

Xpt1 = PTGPx; +uy, + ¢+ wy,

where w;, is white but linearisation error {;, is correlated in time.

In principle we get vast non-sparse matrix of error correlations of size
(no of variables) x (number of time steps).

We get a much more compact representation if we approximate the
correlations by supposing

E[¢i4 ¢l 1= AIQ
some A, Q
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Time correlated errors

If

Ci+1 = AC; + 1y (7)
where
for some symmetric positive definite E, where

E[COnZT] =0 forall i
and
E[nn;]1 =0 for all i # j

then let Q satisfy

E=0 - AQAT
then as 7 — oo we have

E[¢i¢i1— Q
B¢ 1 — A'Q



Signal model for system with time correlated

earisation error

So take the signal model to be
)(k4—1 — C;k I X Uz Wi
(&)= (% a)(2)+(3)+(%) o
The first line of (8) is (6).

The second line is (7), our model for the evolution of linearisation
errors.

We will denote the double-sized vectors by underlines, so (8) is written
as

Xp4+1 = GpXp + ug + wy,
Similarly writing

H; = (Hy 0)
the observation model is now

Vi = HpXp + v

- Je1b5



EKF with time correlated linearisation error =

If we write down a standard KF for (8) then we would have

Q= ( cov(wy, wp) cov(wpg,ng) ) _ ( MP )

cov(ng, Wi)  cov(ng, Ng)
The enhanced KF is then: for k=0,1,...n

Predict

Xplk—1 = GrXp—1k—1 T Ug—1
Pyp—1 = GrPr_15-1(Gp)" + Qi (9)
Update

T 1
Ky = Pyy—1Hj, (HpPyp— 1 Hj, + Ry)

$k|k: = Xk|k—1 + Kk:(yk: - ﬂkgk:]k—l)
Ppp=U - KpHy)Ppjp 1 (10)



Parameters for filter including linearistion error

This filter has new parameters QMY QF, A, associated with our
model for the evolution of linearisation error. These are both inputs
and outputs from the filter.

We will set

(oY o
Q‘<5 @5)

ie, neglect QM = cov(wy,my,)

QM = E[wyw}] is full model error (important, but not the subject of
this talk!).

We will neglect dependence on k leaving us with the need to determine
parameters A and QY.



Determination of linearisation error parameters

This leaves need to estimate A and QF
If we set them in some fashion and run the KF (9,10) for N > 1 time

steps and for k= 1,..,N set
B( k) = fi(xp) — freRgp) — Gr(xp — Xpp)

we can form the covariance matrix
YT =Y"y=2="/N

Similarly, we may estimate cross correlation linearisation error matrices

’I‘j by setting

and
;=818 /(N —j) (11)

T el —]

'I‘j is the covariance between the linearisation error on a given time
step and the linearisation error on a time step j time steps away.
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Determination of linearisation error parameters,

ont'd

Comparing with foregoing, so long as Tj_l_lTj_l approximately inde-
pendent of 5 we can set

— —1
A=, 17;
QF =Yy — AY AT

In practice Tlej—l will not be entirely independent of 57 so we will
need to make some approximation.

In summary, we may estimate A, QP by running the filter (9,10) with
arbitrary A, QP (eg A =0, QF =0), measure Y, as given by (11) and
use these empirical values to estimate A, QP, and repeat. So long as
the process converges then input A, QP and measured covariances Y
will be consistent.
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Example: L95, nearly perfect full model,

versistence for linear mode

Example - for the truth and full model f we use L95 with n = 25
variables, that is f is a single timestep integration (by fourth order
Runge-kutta with time step 0.05) of

dx;
d_tl = (Tj41 —®—2)xj1 —T; + F

For the linear model G we go to an interesting extreme and set Mp =
Id, ie, the linear model solves

=0 ()

da:i
dt

We follow above iterative procedure to obtain parameters.
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Example: L95, nearly perfect full model,

versistence for linear mode

We go one stage further with the approximation for time correlations,
and set A = o, that is

Y1 Y, xal

where

_ 1Yo Maf| | 1 |[[¥go Y5
2 || Toll? 2\ [IYoll?

As above begin with standard EKF (QM tiny but non-zero, optimised
for TL as in Fisher et al 2007, and A = Qf = 0), obtain first estimates
for A, = axId, QF, and iterate ...



Example: L95, nearly perfect full model,

versistence for linear mode

Cycle Mean square analysis error Mean square analysis error
for time steps 100-5000 o for time steps 100-5000
time-correlated KF time-uncorrelated KF
0 20.6 0 20.6
1 1.05 0.71 0.58
2 0.188 0.77 0.33
3 0.112 0.80 0.20
4 0.093 0.77 0.19
5 0.083 0.77 0.17

cf mean square analysis error using exact TL (and optimal QM) of
0.0207
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Variational version: weak constralnt 4D-Var

allowing for time correlated

To cut a long-ish story short:

In the limit as Q™ — 0 we need to minimise
J((SXO, ..,5Xm,5CO, "75Cm—1) =
1o 171 1 & g T 1 g
§5X0 B, “oxqg + 5 > (yi — Hi(x! 4+ 6x;))" R, ~(y; — Hi(x{ + 6%;)) +
1=0

m—2
%5C B 15Co+ ! Z (6Ci+1 — Ai5Cz‘)TQP—1(5Cz‘+1 — Ai0G;)

subject to

6¢; = ox;41 + x§+1 — MPsx; — MxY, i =0,..,m—1

where BC is the prior for linearisation error ¢, corresponding to B as
the prior error for x, ie

XO|—1 ~ N(KOv Ba?)a CO|_]_ ~ N(O, Bc)



Remarks onvariational form

If we write down the problem to be solved in the form find xq, .., dxm
such that

J'(6x0,..,0%m) = 0
0

then whereas for standard weak constraint 4D-Var we had to solve a
block tridiagonal system, we now need to solve a block penta-diagonal
one.

Following Fisher et al, in the limit as window length — oo we don't
need prior for x or ¢

This is useful as we all know how sensitive results are to choice of B
- so here we remove B entirely

If we minimise this cost function we obtain mean square analysis error
as shown in blue on next slide
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Long window weak constraint 4D-Var allowing for =
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4D-Var (blue) has mean square error of 0.074, slightly smaller than
mean square error of 0.082 for EKF (black)
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Linearisation error has multiple sources, including missing physical pro-
cesses and lower resolution. It is very significant in incremental 4D-Var,
but unlike model error we have complete knowledge of it

We have shown that it is possible to account for it in the Extended
Kalman Filter and incremental 4D-Var

In later iterations of the outer loop we expect analysis increments and
hence linearisation error covariances to be smaller

In our example where the full model was L95 and the linear model was
persistence, a simple allowance for linearisation error reduced RMS
analysis error by a factor of 20, to only double what it would have
been with exact tangent-linear.

One can view this variously as providing scope for:

- improved performance

- getting away with simpler (and hence cheaper) linear models

- providing insight into the relation between model error and linearisa-
tion error



The End
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